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Abstract. The Cantor set character of the electronic energy spectrum of a one-dimensional 
quasi-crystal in the form of a Fibonacci sequence is analysed under the tight-binding approxi- 
mation by means of a renormalisation procedure. The electronic structure of quasi-periodic 
superlattices is also studied with the conclusion that there scarcely exists any notable dif- 
ference from periodic superlattices. 

Since the observation of fivefold symmetry by Schechtman et a1 (1984) in the x-ray 
diffraction pattern of Alo s6Mno quenched alloy, the discovery of quasi-crystals has 
stimulated wide interest and a range of research. Levine and Steinhardt (1984) suggested 
immediately after Schechtman et a1 (1984), a model of fivefold symmetry with long- 
range order. A number of authors (Bak 1985, Mermin 1985, Jaric 1985) discussed then 
the stability of icosahedral systems on the basis of the Landau theory. Very recently, 
Widom et a1 (1987) investigated a simple two-dimensional Lennard-Jones system with 
two components by Monte Carlo simulation. They obtained quasi-crystalline structure 
in equilibrium state with tenfold symmetry. 

The electron and phonon structures of quasi-crystals have been investigated, too. 
Lu eta1 (1986) and Odagaki and Nguyen (1986) computed separately the lattice vibration 
spectra of one- and two-dimensional quasi-crystals. In a previous correspondence, the 
present authors (Ma etall986) reported results of computation of the electronic densities 
of states for a one-dimensional Fibonacci chain. Hu and Ting (1986) evaluated the 
electric resistivity of a one-dimensional quasi-crystal. Their conclusion is that there exist 
two categories of electronic states contributing very differently to the resistance, one 
corresponding to localised and the other corresponding to extended or tunnelling states. 

The present paper is devoted firstly to an analysis of the Cantor set character of 
the electronic energy spectrum of a one-dimensional tight-binding quasi-crystal and 
secondly to an investigation of the electron structures of quasi-periodic superlattices. In 
our previous publication (Ma et af 1986), we have evaluated the electronic density of 
states (DOS) of a tight-binding model of a one-dimensional Fibonacci chain (see figure 
1) described by the following Kamiltonian: 
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A-B-B-A-B-B-B-B-A-B-BIA--8-B-B ... 
Figure 1. A schematic representation of a one-dimensional Fibonacci quasi-crystal. A and 
B signify possible different atomic levels. 

where 

EA i E A  

EB i E B  
E l  = [ 

and 

j = i & 1,  i and j connected by a long bond 

T,j = T ,  j = i f. 1, i and j connected by a short bond (3) 1: otherwise, 

Here we would like to supplement our previous results by showing in figures 2 and 3 the 
integrated DOS defined by 

E 

D ( E )  = p(E ’ )  d E ’  (4) 

with p(E) being the DOS obtained previously. It can be seen that the D ( E )  curves display 
steps in one-to-one correspondence with occurrence of gaps in the p(E) histograms (see 
figures 3 and 4 of Ma et a1 1986). Two distinct steps can be seen when Ts is slightly larger 
than TL. When the difference between Ts and TL becomes larger, these main steps 
become wider and secondary steps appear. With still larger difference between T, and 
TL still smaller steps appear between the secondary steps. However, the height of both 
a main step or a smaller step remains constant independent of the value of Ts - TL. 

In figures 4 and 5 we display successive magnifications of D(E)  and p(E) for a 
Fibonacci chain containing 25 000 atoms. The self-similarity is evident in these figures 
showing the Cantor set structure of the electronic energy spectrum. In 0 1 below we shall 
explain the above mentioned characteristics of the electronic energy spectrum and then 
in 8 2 we shall consider the energy spectra of electrons in superlattices. 

1. Renormalisation analysis of the electronic structure of one-dimensional quasi-crystals 

Before analysing the electronic structure, we would like to remind readers of the self- 
similarity in the Fibonacci sequence: 

s,: L 

Sz: LS 

s3: LSL 

s,: LSLLS 

sg: LSLLSLSL 

s g :  LSLLSLSLLSLLS 

. . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  
s, = Sn-1Sn-2. 
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- 3  -2 -1 0 1 2 3 
Energy, E 

Figure 2. The integrated DOS of a one-dimensional Fibonacci chain of 10000 atoms in the 
symmetricalcase: E* = E~ = 0, TL = 1, T, = ( a )  1, ( b )  1.5. 

This means that starting with mth generation and identifying S, ,  S , ,  with S ,  L respect- 
ively (e.g. setting S2 = LS = s' and S3 = LSL = L'), we obtain once more the original 
sequence. We shall see this property has direct consequences on the electronic structure. 

Now we turn to disclose the self-similarity structure in the electronic energy spec- 
trum using renormalisation transformations (Niu and Mori 1986). Consider first, for 
simplicity, the case E* = E ~ .  We begin with the case TL = 0. The Fibonacci chain 
becomes, then, a one-dimensional array consisting of isolated atoms A and diatomic 
molecules composed of two B atoms. The energy eigenvalue of an electron on an isolated 
A atom is E = 0. On the other hand, a diatomic molecule has a bonding and an anti- 
bonding state, corresponding, respectively, to the energy eigenvalues E = 7 Ts. Thus 
the energy spectrum consists of three discrete levels: E = 0, +- Ts. In the limit of an 
infinitely long Fibonacci chain, the number of long bonds to the number of short bonds 
is NL/Ns  = t-' = 4(5ll2 + l), where z = 1(5112 - 1) is the golden mean. Each short bond 
connects two B atoms and there is an A atom or a B molecule between any two 
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I 

-3 -2 -1 0 1 2 3 
Energy E 

Figure 3. The integrated DOS of a one-dimensional Fibonacci chain of 10000 atoms in the 
asymmetrical case E~ = 0. E~ = 0 2 .  T,  = 1. I", = (a )  1. (6) 1-9- 

neighbouring long bonds. Let the numbersof A and B atoms be N A  and NB, respectively, 
then by the above analysis, NB = 2Ns whereas N A  = N , -  N , ,  so that N A / N B  = 
(25) - '  - B. Thus, the fractions of A and B atoms are, separately, t3 and 2s'. It follows 
that the DOS of the three levels are, respectively, 

p ( E  = 0 )  = t 3  

p ( E  = k T s )  = t 2 .  

The integrated DOS consistsof three stepswith respective heights: t' = 0.381 96601 . . . , 
r 2  + T~ = 0.61803398. . . and 2 t 2  + t3 = 1. in agreement with results of numerical 
computation (see figures 2 and 3): 0.382,0.618 and normalisation. 

Consider next the case TL # 0. For each degenerate level an equivalent Hamiltonian 
can be constructed in similarity to the original one, accomplishing thus a renormalisation 
transformation. Consider first the level E = 0 of an isolated atom. With a non-zero TL,  
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Figure 4. The electronic DOS of a one-dimensional Fibonacci chain of 25000 atoms in the 
symmetrical case with successive magnified views. .E* = E~ = 0. TL = 1. Ts = 1.5. 

each atom A is coupled to nearest atoms on both sides via molecules B. We proceed to 
calculate the effective coupling. Two cases must be distinguished: two nearest atoms are 
separated by one or two molecules. In the first case as shown in figure 6, we can write 
the following Schrodinger’s equations: 
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Figure 5. The integrated DOS of a one-dimensional Fibonacci chain of 25000 atoms in the 
symmetrical case with successive magnitifed views. cA = cB = 0, TL = 1, T, = 1.5. 
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- 
0 ... ... 0-- 

n - I  n n + l  n+2 n+3 

Figure 6. Two ‘atoms’ n and n + 3 coupled via a ‘molecule’, ( n  + 1, n + 2 ) .  

Solving for V n +  from the third line of (6) and substituting into the first line, we have 

TLVn-1 - T t T i ‘ ~ n + 3  = EVn (7) 

by neglecting small terms in view of the fact that we are considering the level E = 0. 
Comparing with the first line of (6), we know the effective coupling strength is 
T ;  = - T i T i l .  For the case of two atoms separated by two molecules (figure 7), the 
Schrodinger’s equations are: 

TLVn-1 + TLVn+1 = EVn 

TLVn + T s V ~ + ~  = EVn+1 

... 0- o---o---.o--o-. . . . 
n -1 n n+l n*2 n+3 n+4 n +S 

Figure 7. Two ‘atoms’ n and n + 5 coupled via two ‘molecules’: (n + 1, n + 2 )  and (n  + 3), 
n + 4). 

By the same procedure, we obtain 

Hence, the effective coupling strength is T i  = T? T i ’ .  Replacing a bond between two 
A atoms via a single molecule with T ;  and a bond via two molecules with T i ,  we obtain 
again a Fibonacci chain. Setting T t  = 0 in the new Fibonacci crystal, we obtain the new 
‘atomic’ and ‘molecular’ levels: E = 0; ? Tk.  An identical analysis yields the same heights 
of the main steps in the integrated DOS as above. Since the DOS of the E = 0 level before 
the transformation is t3, the height of the first secondary step relative to the first main 
stepis t2t3 = t5 ,  whereas that ofthe next secondarystepis t t3 = t4, withcorresponding 
absolute heights: t2 + t5 = 0.47213595 . . . and t 2  + t4 = 0.52786404. . . . Results of 
numerical computation are 0.472 and 0.528 (figures 2 and 3). 

In order to treat the molecular levels: E = ? T,, we note that a molecule may couple 
directly to another neighbouring molecule or indirectly via an atom. In the case of direct 
coupling ( figure 8), we have 

TLVn-I+  T3LTi1Vn+5=EVn* (9) 

TLVn-1 + TsVnil  EVn 

TsVn + T ~ V n i 2  = EVn+1 

TLYn+, + TsVn+3 = EVn+z 

TsVni2 + T L V ~ + ~  = EVn+3. 

(10) 

i i*l * h ... o----o--.o--------.o-- ... 
n -1 n ncl n+2 n+3 n+4 

Figure 8. Two ‘molecules’, i (n,  n + 1) and i + 1 (n  + 2, n + 3) ,  in direct coupling. 
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From figure 8, the bonding and anti-bondingstatesof the ith and the (i  + 1)th molecules, 
corresponding to the energy eigenvalues E = k Ts are 

Substituting for q,,, qn+l,  I#,,+~ and q,+3 from (11) into (lo), we have after 
simplifications 

2-1 /2TLqn-1  + fTLq$+' - 4TLvL+' = ( E  - T S ) q :  

$TLq'+ - ;TLv'- + 2-1/2TLqn+4 = ( E  - TS)V$+' 

-2-1 /2TLqn._1  + fTLq$+' - $TLqL+' = ( E +  Ts)qL 
(12) 

- fTLv '+ - fTLqL  + 2-'12TLqn+4 = ( E  + TS)I/.IL+'. 

In the lowest order of approximation, when E = Ts, the couplings between the bonding 
and anti-bonding states can be neglected. We omit thus all terms containing ql- and 
qL+' (q$ and q$+') in the equations for q$ and q$+' ( vL  and qL+') and conclude, 
thereby, that the effective coupling strength between anti-bonding (bonding) molecules 
is 4TL ( - fTL) .  

The same analysis applied to molecules coupled indirectly via an atom yields an 
effective coupling strength between either anti-bonding or bond molecules as aT', Ti '  
(figure 9). Consider now a molecule as a single entity and describe, respectively, the 

i /+I - A ... 0-- 0-0 0 ... 
Figure 9. Two 'molecules', i and i + 1, in indirect coupling via an 'atom'. 

.. 

direct and indirect couplings with effective bonds by Tk = 2 f T L  and T i  = $ T t T i l  ; we 
again obtain a Fibonacci crystal. It follows that the anti-bonding level splits into three: 
E = T,, and T s  2 T i  = T s  T fTL.  Since the DOS of the original level E = Ts is t2, those 
of the three split levels are: 

p(Ts - f T L )  = t2t2 = t4 p ( T s )  = t2t3 = t5 

Two secondary steps appear in the integrated DOS with relative heights in respect of the 
second main step: t4 and t3 and absolute heights t + t4 = 0.7693202, . . , z + t3 = 
0.854 101 96 . . . , in contrast to the values 0.764 and 0.854 from numerical computation. 

In a similar manner we obtain the absolute heights of the secondary steps arising 
from the bonding level as t' = 0.14589803 . . . and t3 = 0.23606797 . . . in contrast to 
0.146 and 0.236 by numerical evaluation. 

The renormalisation process can be carried on indefinitely. We list in the following 
table 1 the absolute heights of the steps of the first three orders. Successive renor- 
malisation transformations generate, therefore, sub-bands and gaps of higher and higher 
orders in the energy spectrum and steps of successive orders in the integrated DOS, 
resulting in a Cantor set structure. 

p(Ts  + f T L )  = t2t2 = t4, 

(13) 
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Table 1. The absolute heights of steps in the integrated DOS. t = $(5”* - 1) = 
0.61803399. . . . 

Order of steps in D ( E )  
1 2 3 

75 + 72 

t‘ + t 2  

t7 + 75 + t2 
76 + t5 + 72 
r6 + r4 + t 2  
ts + r4 + t2  

7 

t6+ 7 
t 5 +  r 

t’ + t4 + t 
t6 + 7 4  + 7 
t6 + t3 + 7 
r 5  + t3 + r 

r 4 + 7  

7’ + t 

1 

It should be pointed out that the preceding analysis is based upon the conditions 
ITL/TsI 1 and = EB = 0. However, numerical computation implies that results of 
the above analysis are correct even though TL S Ts. When eB f 0, there are two cases. 
In the first case when eB is small relative to Ts, a non-vanishing eB does not affect the 
above conclusions. In the second case when eB is large, so that the order of arrangement 
of ‘atomic’ and ‘molecular’ levels is modified, the heights of the steps will be affected. 
Nevertheless, the ideas of the analysis still works. Discussions in this case will be 
postponed for a later publication. 

2. Electronic structure of quasi-periodic superlattices 

It is of interest to ask whether the above-explained structure in the energy spectrum can 
be detected in a more realistic physical system, such as quasi-periodic superlattices (Hu 
et al1986; Merlin et a1 1985). We shall show in this section that, unfortunately, the answer 
is in the negative. 
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Figure 10. Schematic representation of a Fibonacci quasi-superlattice, where a is the lattice 
spacing of the periodic chains (planes). 

Suppose an infinite number of one-dimensional periodic chains or two-dimensional 
square lattices are arranged in a Fibonacci sequence as shown in figure 10. We prescribe 
a periodic atomic chain (plane) connecting to nearest-neighbouring chains (planes) on 
both sides by long bonds as an A atomic chain (plane) and all other chains (planes) as 
B atomic chains (planes). The tight-binding Hamiltonian of the system can be written 

H = li)ei(il + li)Tij(jJ 
I i. j 

where 

i E A  

i E B  

and 

T L  

T5 

TO = TA 

TB 
0 otherwise. 

( i , j )  = (n ,  n ) ,  iandjconnected by a long bond 

( i ,  j )  = (n ,  n ) ,  i and j  connected by a short bond 

(i, j )  = ( n ,  n) ,  i and j connected by a periodic A bond 

(i, j )  = ( n ,  n ) ,  i and j connected by a periodic B bond 

k,n k,n 

(16) 

1 
Transforming to the Fourier representation in the directions of periodic arrangement, 

H = C Ik, n)E,(k)(k,nI + 2 {Tn,n-lIk, n)(k,  n - 11 + Tn,,+lIk, n)(k,  n + 11 + cc) 
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-6 -4  - 2  0 2 4 6 

Energy, E 

Figure 11. The electronic DOS of a two-dimensional Fibonacci quasi-superlattice. (a) eA = 
E~ = 0, Ti = T,  = 1, TL= Ts= l ;(b)&A=O, EB =0.5,  Ti = TI= 1.5, T L =  1, Ts= 1.9. 

where k is a Bloch vector. Writing H = &Hk, then Hk is the Hamiltonian of a one- 
dimensional quasi-crystal. In (15), 

. .  L E A  + 2TA COS(~U)  when n is an A chain 
E n ( k )  = 

[ & B  -k ~ T B  COS(kU) when n is a B chain 

in the case of a two-dimensional quasi-periodic superlattice and 

&A -k 2T~[cOS(k,a) -k COS(k,U)] 

E B  + 2T~[cOS(k,ff) + COS(k,U)] 

when n is an A plane 

when n is a B plane &“PI = 
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Figure 12. The integrated DOS of a two-dimensional Fibonacci quasi-superlattice with 
identical parameters as in figure 11. 

in the case of a three-dimensional quasi-periodic superlattice, whereas 

n and n -+ 1 connected by a long bond 

n and n -+ 1 connected by a short bond. 

I I  

Ibl 

1_. -- 
-8 -4 0 4 - 8  -4 0 4 8 

Energy, E Energy, E 

Figure 13. The electronic DOS of a three-dimensional Fibonacci quasi-superlatice. (a) .cA = 
.cB = 0, T ,  = TZ = TL = Ts = 1; ( b )  = = 0, T ,  = T z  = 1.5. T,  = 1, Ts = 1.9. 
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Figure 14. The integrated DOS of a three-dimensional Fibonacci quasi-superlattice. eA = 
eB = 0. T ,  = Tz  = 1.5, TL = 1 ,  T,  = 1.9. 

For a fixed k,  Hk is a tridiagonal matrix. The corresponding DOS p ( k ,  E )  can be computed 
by means of the method of negative eigenvalues (Dean 1972, Ma et all986). The total 
DOSS are then given by 

p(E) = ( 2 ~ ) ’ - ~  d”- ’k(k ,  E )  

D being the dimensionality of the superlattice. 
The results of computation are given in figures 11 to 14. In the case of two-dimensional 

superlattices, only very indistinct, blurred ‘steps’ can be seen in the integrated DOS 
curves, while in the case of three-dimensional superlattices, the DOS histograms and the 
integrated DOS curves are essentially the same as in the case of an ordinary three- 
dimensional crystal with periodic lattice structure, no important characteristics arising 
from the quasi-periodicity are detectable. We conclude, therefore, there exist no impor- 
tant differences in the bulk properties, such as the specific heat, between quasi-periodic 
and periodic superlattices. Nevertheless, the Cantor set structure is still observable. in 
the case of a quasi-superlattice, by investigating any physical process for which only the 
energy spectrum at a definite point in the (one- or) two-dimensional Brillouin zone is 
concerned (Ma and Tsai 1987, Todd et a1 1986). 

D ( E )  = ( 2 ~ ) ] - ~  d E ‘  dD-’k(k ,  E ‘ )  (20) I E  i i 

Acknowledgment 

The authors would like to acknowledge helpful discussions by Dr G D Pang. 

References 

Bak P 1985 Phys. Reo. Len. 54 1517 
Dean P 1972 R e v .  Mod. Phys. 44 127 
Hu A, Tien C. Li X J ,  Wang Y H and Feng D 1986 Phys. Lefl. 119A 313 

C23 



4324 Hong-ru Ma and Chien-Hua Tsai 

Hu P and Ting C S 1986 Phys. Rev. B 34 8331 
Jaric M V 1985 Phys. Rev. Lett. 55 607 
Levine D and Steinhardt P J 1984 Phys. Rev. Lert. 53 2477 
Lu J P, Odagaki T and Birman J L 1986 Phys. Rev. B 33 4809 
Ma H R, Xu T and Tsai C H 1986 J .  Phys. C: Solid State Phys. 19 L823 
Ma H Rand Tsai C H 1987 Phys. Rev. B 35 9295 
Merlin R,  Bajema K, Clarke R, Juang Y and Bhattachanya A 1985 Phys. Rev. Lett. 55 1768 
Mermin N D and Troian S M 1985 Phys. Rev. Lett. 54 1524 
Niu P 2nd Nori F 1986 Phys. Rev. Lett. 57 2057 
Odagaki T and Nguyen D 1986 Phys. Rev. B 33 2184 
Schechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951 
Todd J ,  Merlin R, Clarke R, Mohanty K M and Axe J D 1986 Phys. Rev. Left. 57 1157 
Widom M, Stradburg K J and Swendsen R H 1987 Phys. Rev. Lett. 58 706 


